Synthesis and Characterisation of 1,2-Bis(dimethylphosphino)ethane (dmpe) Complexes of Chromium-(0) and -(iv): \boldsymbol{X}-Ray Crystal Structures of trans$\mathrm{Cr}\left(\mathrm{N}_{2}\right)_{2}(\mathrm{dmpe})_{2}$, cis $-\mathrm{Cr}(\mathrm{CO})_{2}(\mathrm{dmpe})_{2}, \mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{Ph}_{2}\right)_{2}(\mathrm{dmpe})$, and $\mathrm{CrH}_{4}(\mathrm{dmpe})_{2} \dagger$

Julian E. Salt, Gregory S. Girolami, and Geoffrey Wilkinson* Chemistry Department, Imperial College of Science and Technology, London SW7 2AY Majid Motevalli, Mark Thornton-Pett, and Michael B. Hursthouse* Chemistry Department, Queen Mary College, London E1 4NS

Abstract

The reduction of trans $-\mathrm{CrCl}_{2}(\text { dmpe })_{2}[$ dmpe $=1,2-\operatorname{bis}($ dimethylphosphino) ethane $]$ in tetrahydrofuran by sodium amalgam under dinitrogen leads to the complex trans $-\mathrm{Cr}\left(\mathrm{N}_{2}\right)_{2}$ (dmpe) $)_{2}$, under carbon monoxide to the known cis $-\mathrm{Cr}(\mathrm{CO})_{2}(\mathrm{dmpe})_{2}$, and in presence of $\mathrm{Bu}^{\mathrm{N} N C}$ to trans$\mathrm{Cr}(\mathrm{CNBu})_{2}(\mathrm{dmpe})_{2}$. Interaction of trans $-\mathrm{Cr}\left(\mathrm{N}_{2}\right)_{2}(\mathrm{dmpe})_{2}$ with ethylene, buta-1,3-diene, diphenylacetylene, and hydrogen (under irradiation) gives, respectively, trans $-\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}(\text { dmpe })_{2}$, cis $-\mathrm{Cr}\left(\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{6}\right)(\text { dmpe })_{2}, \mathrm{Cr}(\mathrm{PhC} \equiv \mathrm{CPh})_{2}($ dmpe $)$, and $\mathrm{CrH}_{4}(\text { dmpe })_{2}$. Infrared and nuclear magnetic resonance spectra are reported together with X-ray crystal structures of four of the complexes. The trans-bis(dinitrogen) complex is centrosymmetric with octahedral geometry and $\mathrm{Cr}-\mathrm{N}$ and $\mathrm{Cr}-\mathrm{P}$ distances of $1.874(3)$ and $2.296(1) \AA$, respectively. The $N-N$ bond length, $1.122(3) \AA$, is normal. The cis-dicarbonyl complex is also octahedral with a Cr - C distance of $1.812(6) \AA$; the $\mathrm{Cr}-\mathrm{P}$ distances are different at 2.343 (3) \AA trans to CO and 2.278 (3) \AA trans to P, reflecting large differences in trans influence between CO and phosphine. The diphenylacetylene complex has π-bonded acetylene groups with Cr - C distances in the range $1.886(5)-1.980(5) \AA$ and a chelating dmpe ligand, with Cr - P distances of 2.280 (3), 2.298 (3) \AA. The chromium(iv) hydride has a dodecahedral structure with phosphines occupying the B sites [$\mathrm{Cr}-\mathrm{P} 2.255(3) \AA$] and the hydrogen atoms the A sites [$\mathrm{Cr}-\mathrm{H} 1.57$ (3) \AA].

In a preliminary note ${ }^{1}$ we have described some 1,2 -bis(dimethylphosphino)ethane (dmpe) complexes of chromium(0), -(II), and -(IV). Details of some of this work are now given; the synthesis of the starting material, trans $-\mathrm{CrCl}_{2}(\mathrm{dmpe})_{2}$, and the corresponding dimethyl are described separately. ${ }^{2}$

Results and Discussion

1. trans-Bis[1,2-bis(dimethylphosphino)ethane $]$ bis(dinitrogen)chromium(0). - Reduction of $\mathrm{CrCl}_{2}(\mathrm{dmpe})_{2}$ with five equivalents of sodium amalgam under dinitrogen gives initially a brown, and subsequently, a red-orange solution. Interruption of the reduction at the brown stage followed by work-up of the products gives a mixture of trans $-\mathrm{Cr}\left(\mathrm{N}_{2}\right)_{2}(\mathrm{dmpe})_{2}$ and darker coloured crystals which appear to be the cis isomer. These can be separated by hand picking (not by fractional crystallisation). The more vigorous the stirring and the longer the reaction time, the less cis isomer is formed. The orange-red solution after evaporation and extraction into light petroleum produces large red prisms of trans $-\mathrm{Cr}\left(\mathrm{N}_{2}\right)_{2}(\mathrm{dmpe})_{2}$ in high yield.

For the trans isomer, the i.r. band at $1930 \mathrm{~cm}^{-1}$ is very broad in the Nujol mull but in hexane solution the band at $1932 \mathrm{~cm}^{-1}$ is very sharp. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum shows only a singlet at 1.29 p.p.m. for both the CH_{3} and CH_{2} groups of dmpe while the

[^0]${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ spectrum has a sharp singlet at 69.3 p.p.m. confirming the equivalence of the equatorial P atoms in the trans structure. The i.r. spectrum of the cis isomer shows two bands, at 1920 and $1895 \mathrm{~cm}^{-1}$, while that of the trans isomer has one; these are clearly the dinitrogen stretches.
Previously known chromium complexes of N_{2} have been either unstable or unisolable ${ }^{3-5}$ and except for cis $-\mathrm{Cr}\left(\mathrm{N}_{2}\right)_{2}-$ $\left(\mathrm{PMe}_{3}\right)_{4}{ }^{4}$ all contain CO or arene ligands. ${ }^{5}$ The dmpe ligand presumably stabilizes the $\mathrm{Cr}\left(\mathrm{N}_{2}\right)_{2}$ unit by its basic nature and chelation.

Since the initial X-ray structural determination at room temperature (see later) indicated an abnormally short $\mathrm{N}-\mathrm{N}$ bond distance, ${ }^{1}$ the photoelectron and Raman spectra of the trans complex were determined. The values for the $\mathrm{N}(1 s)$ binding energies (corrected by calibration to the known binding energy of chromium metal) were 398.4 and 399.75 eV . The lower value was probably due to ionization of the $1 s$ electron from the terminal nitrogen as this has a tendency to be more negative; ${ }^{3}$ both values are similar to those in, for example, trans$\mathrm{Mo}\left(\mathrm{N}_{2}\right)_{2}(\mathrm{dppe})_{2} \quad$ [dppe $=1,2$-bis(diphenylphosphino)ethane] (399.6 and 398.6 eV), ${ }^{3}$ for which $\mathrm{N}-\mathrm{N}=1.118(9) \AA{ }^{6}{ }^{6}$

Similarly, the Raman data in the solid at 80 K appeared normal with $\mathrm{N}-\mathrm{N}_{\text {sym }} 2001.65, \mathrm{Cr}-\mathrm{N}_{\text {sym }} 408.35$, and $\mathrm{Cr}-\mathrm{P}_{\text {sym }}$ $942.43 \mathrm{~cm}^{-1}$.

The X-ray structure shows that the molecule lies on a centre of symmetry and contains conformationally frozen chelating dmpe groups (Figure 1). The revised bond lengths and angles for the structure at room temperature (see Experimental section) are given in Table 1. Compared with our previously reported results, ${ }^{1}$ the $\mathrm{N}-\mathrm{N}$ distance of $1.122(3) \AA$ is now normal, thus accounting for the normality of the spectroscopic data, and the $\mathrm{Cr}-\mathrm{N}$ distance has shortened to $1.874(3) \AA$. This and the shortness of the $\mathrm{Cr}-\mathrm{P}$ distances when compared with those of $2.345(3) \AA$ in the octahedral chromium(II) complex, CrMe_{2} (dmpe) $)_{2},{ }^{2}$ indicates significant metal-ligand π backbonding in this 18 -electron complex. Part of the difference

Figure 1. The structure of trans $-\mathrm{Cr}\left(\mathrm{N}_{2}\right)_{2}(\mathrm{dmpe})_{2}$

Table 1. Bond lengths (\AA) and angles () for $\operatorname{trans}-\mathrm{Cr}\left(\mathrm{N}_{2}\right)_{2}(\text { dmpe })_{2}$

$\mathrm{N}(1)-\mathrm{Cr}(1)$	1.874(3)	$\mathrm{P}(1)-\mathrm{Cr}(1)$	$2.2940(5)$			
$\mathrm{P}(2)-\mathrm{Cr}(1)$	$2.2970(5)$					
$\mathrm{N}(2)-\mathrm{N}(1)$	$1.122(3)$					
$\mathrm{C}(11)-\mathrm{P}(1)$	1.830(4)	$\mathrm{C}(12)-\mathrm{P}(1)$	1.829(4)			
$\mathrm{C}(13)-\mathrm{P}(1)$	1.851(4)	$\mathrm{C}(23)-\mathrm{C}(13)$	1.514(4)			
$\mathrm{C}(21)-\mathrm{P}(2)$	1.830(4)	$\mathrm{C}(22)-\mathrm{P}(2)$	$1.830(4)$			
$\mathrm{C}(23)-\mathrm{P}(2)$	1.858(4)					
- $\mathrm{Cr}(1)-\mathrm{N}(1)$	88.10(5)	$\mathrm{P}(2)-\mathrm{Cr}(1)-\mathrm{N}(1)$		89.30(5)		
2)-Cr(1)-P(1)	83.40 (5)					
2)-N(1)-Cr(1)	178.2(1)					
11)-P(1)-Cr(1)	123.1(2)	$\mathrm{C}(12)-\mathrm{P}(1)-\mathrm{Cr}(1)$		119.6(2)		
12)-P(1)-C(11)	100.4(2)	$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{Cr}(1)$		109.2(2)		
13)-P(1)-C(11)	99.4(2)	$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{C}(12)$		101.5(2)		
23)-C(13)-P(1)	109.5(2)	$\mathrm{C}(21)-\mathrm{P}(2)-\mathrm{Cr}(1)$		123.1(2)		
22)-P(2)-Cr(1)	118.0(2)	$\mathrm{C}(22)-\mathrm{P}(2)-\mathrm{C}$	(21)	100.6(2)		
23)-P(2)-Cr(1)	110.8(2)	$\mathrm{C}(23)-\mathrm{P}(2)-\mathrm{C}$	(21)	99.7(2)		
23)-P(2)-C(22)	101.2(2)	$\mathrm{P}(2)-\mathrm{C}(23)-\mathrm{C}$	(13)	109.4(2)		

however, may also be due to an increase in the metal radius in the Cr^{11} complex resulting from the metal spin state.
The trans complex is relatively unreactive. It does not react with CO or H_{2} at 25 C and 7 atm except under u.v. irradiation (see later) where facile reactions occur probably due to dissociation of N_{2} to give the co-ordinatively unsaturated 14electron species $\mathrm{Cr}(\mathrm{dmpe})_{2}$, similar to the species ${ }^{\mathrm{C}} \mathrm{Mo}(\mathrm{dppe})_{2}{ }^{\prime}$ proposed by Graff et al.,' and the 'W(dppe) ${ }_{2}$ ' detected by flash photolysis of $\mathrm{WH}_{4}(\mathrm{dppe})_{2}{ }^{8}$ [dppe $=1,2$-bis (diphenylphosphino)ethane].
Photolysis in the presence of other potential ligands, e.g., excess PMe_{3}, cyclo-octa-1,5-diene, and phenylacetylene gave no identifiable new species. The major difficulty is that when an extended photolysis time is required (due to unreactivity of the incoming ligand), the formation of $\mathrm{Cr}(\mathrm{dmpe})_{3}$ always occurs.
2. cis-Bis[1,2-his(dimethylphosphino)ethane]dicarbonylchromium (0).-This compound has been previously prepared by the action of dmpe on $\mathrm{Cr}_{2}(\mathrm{CO})_{6}(\mathrm{dmpe})_{3}$, which in turn was

Figure 2. The structure of cis- $\mathrm{Cr}(\mathrm{CO})_{2}(\mathrm{dmpe})_{2}$
prepared from $\mathrm{Cr}(\mathrm{CO})_{3}\left(\mathrm{C}_{7} \mathrm{H}_{8}\right) .{ }^{9}$ It is also readily obtained either by reduction, using $\mathrm{Na} / \mathrm{Hg}$, of trans $-\mathrm{CrCl}_{2}(\mathrm{dmpe})_{2}$ under carbon monoxide or carbon dioxide, by photolysis of trans$\mathrm{Cr}\left(\mathrm{N}_{2}\right)_{2}$ (dmpe) $)_{2}$ under CO , or by interaction of trans$\mathrm{CrMe}_{2}(\mathrm{dmpe})_{2}{ }^{2}$ with CO. The last reaction is quite slow but proceeds essentially quantitatively at 10 atm: trans$\mathrm{CrMe}_{2}(\mathrm{dmpe})_{2}+3 \mathrm{CO} \longrightarrow$ cis $-\mathrm{Cr}(\mathrm{CO})_{2}(\mathrm{dmpe})_{2}+\mathrm{Me}_{2} \mathrm{CO}$. Similar carbonylations of methyl compounds to give acetone have been noted for $\mathrm{Ta},{ }^{10 a} \mathrm{Mo},{ }^{10 b} \mathrm{~W},{ }^{10 \mathrm{C}}$ and $\mathrm{Co} .{ }^{10 d}$

The structure of the dicarbonyl is shown in Figure 2, whilst selected bond lengths and angles are given in Table 2. The molecule has the cis octahedral structure expected on the basis of i.r. and ${ }^{31} \mathrm{P}$ n.m.r. data with angles distorted only by the restricted bite ($82.5 \pm 0.1^{\prime \prime}$) of the dmpe ligands. The bond lengths in the molecule make interesting comparisons with those in the isoelectronic (18 -electron), but not isostructural trans-dinitrogen complex (see above). Thus the $\mathrm{Cr}-\mathrm{C}$ distances are shorter than the $\mathrm{Cr}-\mathrm{N}$ distances by $c a .0 .06 \AA$, whilst the $\mathrm{Cr}-\mathrm{P}$ distances in the dicarbonyl are, on average slightly longer but individually longer or shorter than in the dinitrogen complex. The quite significant difference is probably a reflection of the relative trans influences of the CO and P bonds, with the carbonyls inducing a considerable lengthening of $c a$. $0.06 \AA$ in the $\mathrm{Cr}-\mathrm{P}$ bonds to which they are trans. These results reflect the much greater π-acceptor capability of the CO molecule when compared with N_{2}.
3. trans-Bis[1,2-bis(dimethylphosphino)ethane]bis(t-butyl iso-cyanide)chromium(0).-Sodium amalgam reduction of trans$\mathrm{CrCl}_{2}(\mathrm{dmpe})_{2}$ in presence of two equivalents of $\mathrm{Bu}^{\prime} \mathrm{NC}$ in tetrahydrofuran gives a red-yellow solution from which red prisms of the bis(isocyanide) complex can be obtained. The ${ }^{31} \mathrm{P}$ $\left\{{ }^{1} \mathbf{H}\right\}$ n.m.r. spectrum has a singlet at 71.8 p.p.m. in accord with the proposed structure while the i.r. spectrum also has a single $\mathrm{C}-\mathrm{N}$ stretch at $2055 \mathrm{~cm}^{-1}$.
4. Bis[1,2-his(dimethylphosphino)ethane $]$-bis(ethylene)chromium (0) and - $\left(\eta^{4}\right.$-buta-1,3-diene)chromium (0).-Thermal reactions of trans $-\mathrm{Cr}\left(\mathrm{N}_{2}\right)_{2}(\mathrm{dmpe})_{2}$ with ethylene and buta-1,3diene under mild pressure lead to the corresponding bis(ethylene) and butadiene complexes in quantitative yields.

Table 2. Bond lengths (\AA) and angles ($)$ for cis- $\mathrm{Cr}(\mathrm{CO})_{2}(\text { dmpe })_{2}$

$\mathrm{P}(1)-\mathrm{Cr}(1)$	2.280 (3)	$\mathbf{P}(2)-\mathrm{Cr}(1) \quad 2.34$	2.347(3)
$\mathrm{P}(3)-\mathrm{Cr}(1)$	$2.275(3)$	$\mathrm{P}(4)-\mathrm{Cr}(1) \quad 2.339$	$2.339(3)$
$\mathrm{C}(1)-\mathrm{Cr}(1)$	1.812(6)	$\mathrm{C}(2)-\mathrm{Cr}(1) \quad 1.812$	1.812(6)
$\mathrm{C}(11)-\mathrm{P}(1)$	1.831(7)	$\mathrm{C}(12)-\mathrm{P}(1) \quad 1.83$	1.833(7)
$\mathrm{C}(13)-\mathrm{P}(1)$	1.842(7)	$\mathrm{C}(23)-\mathrm{C}(13) \quad 1.52$	1.527(9)
$\mathrm{C}(21)-\mathrm{P}(2)$	1.840(7)	$\mathrm{C}(22)-\mathrm{P}(2) \quad 1.823$	1.823(7)
$\mathrm{C}(23)-\mathrm{P}(2)$	1.870(7)		
$\mathrm{C}(31)-\mathrm{P}(3)$	1.817(7)	$\mathrm{C}(32)-\mathrm{P}(3) \quad 1.81$	1.817(7)
$\mathrm{C}(33)-\mathrm{P}(3)$	1.841(7)	$\mathrm{C}(43 \mathrm{~B})-\mathrm{C}(33) \quad 1.42$	1.427(14)
$\mathrm{C}(43 \mathrm{~A})-\mathrm{C}(33)$	1.436(11)		
C(41)-P(4)	1.820 (7)	$\mathrm{C}(42)-\mathrm{P}(4) \quad 1.83$	$1.832(8)$
$\mathrm{C}(43 \mathrm{~A})-\mathrm{P}(4)$	1.968 (10)	$\mathrm{C}(43 \mathrm{~B})-\mathrm{P}(4) \quad 1.84$	1.848(14)
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.170(6)$	$\mathrm{O}(2)-\mathrm{C}(2) \quad 1.17$	$1.170(6)$
$\mathrm{P}(2)-\mathrm{Cr}(1)-\mathrm{P}(1)$	82.60(5)	$\mathrm{P}(3)-\mathrm{Cr}(1)-\mathrm{P}(1)$	178.3(1)
$\mathrm{P}(3)-\mathrm{Cr}(1)-\mathrm{P}(2)$	96.20(5)	$\mathrm{P}(4)-\mathrm{Cr}(1)-\mathrm{P}(1)$	99.00 (5)
$\mathrm{P}(4)-\mathrm{Cr}(1)-\mathrm{P}(2)$	95.60(5)	$\mathrm{P}(4)-\mathrm{Cr}(1)-\mathrm{P}(3)$	82.40(5)
$\mathrm{C}(1)-\mathrm{Cr}(1)-\mathrm{P}(1)$	91.3(2)	$\mathrm{C}(1)-\mathrm{Cr}(1)-\mathrm{P}(2)$	90.2(2)
$\mathrm{C}(1)-\mathrm{Cr}(1)-\mathrm{P}(3)$	87.4(2)	$\mathrm{C}(1)-\mathrm{Cr}(1)-\mathrm{P}(4)$	168.7(1)
$\mathrm{C}(2)-\mathrm{Cr}(1)-\mathrm{P}(1)$	89.3(2)	$\mathrm{C}(2)-\mathrm{Cr}(1)-\mathrm{P}(2)$	171.6(1)
$\mathrm{C}(2)-\mathrm{Cr}(1)-\mathrm{P}(3)$	91.8(2)	$\mathrm{C}(2)-\mathrm{Cr}(1)-\mathrm{P}(4)$	87.8(2)
$\mathrm{C}(2)-\mathrm{Cr}(1)-\mathrm{C}(1)$	87.7(3)		
$\mathbf{C}(11)-\mathrm{P}(1)-\mathrm{Cr}(1)$	117.8(3)	$\mathrm{C}(12)-\mathrm{P}(1)-\mathrm{Cr}(1)$	121.6(3)
$\mathrm{C}(12)-\mathrm{P}(1)-\mathrm{C}(11)$	100.3(4)	$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{Cr}(1)$	$112.0(3)$
$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{C}(11)$	100.6(4)	$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{C}(12)$	101.2(4)
$\mathrm{C}(23)-\mathrm{C}(13)-\mathrm{P}(1)$	108.0(4)		
$\mathrm{C}(21)-\mathrm{P}(2)-\mathrm{Cr}(1)$	126.8(3)	$\mathrm{C}(22)-\mathrm{P}(2)-\mathrm{Cr}(1)$	117.3(3)
$\mathrm{C}(22)-\mathrm{P}(2)-\mathrm{C}(21)$	99.6(3)	$\mathrm{C}(23)-\mathrm{P}(2)-\mathrm{Cr}(1)$	108.9(3)
$\mathrm{C}(23)-\mathrm{P}(2)-\mathrm{C}(21)$	99.8(4)	$\mathrm{C}(23)-\mathrm{P}(2)-\mathrm{C}(22)$	100.5(4)
$\mathrm{P}(2)-\mathrm{C}(23)-\mathrm{C}(13)$	109.2(4)		
$\mathrm{C}(31)-\mathrm{P}(3)-\mathrm{Cr}(1)$	115.8(3)	$\mathrm{C}(32)-\mathrm{P}(3)-\mathrm{Cr}(1)$	122.2(3)
$\mathrm{C}(32)-\mathrm{P}(3)-\mathrm{C}(31)$	98.2(4)	$\mathrm{C}(33)-\mathrm{P}(3)-\mathrm{Cr}(1)$	113.9(3)
$\mathrm{C}(33)-\mathrm{P}(3)-\mathrm{C}(31)$	101.8(4)	$\mathrm{C}(33)-\mathrm{P}(3)-\mathrm{C}(32)$	101.8(4)
$\mathrm{C}(43 \mathrm{~A})-\mathrm{C}(33)-\mathrm{P}(3)$	109.1(6)	$\mathrm{C}(43 \mathrm{~B})-\mathrm{C}(33)-\mathrm{P}(3)$	111.9(7)
$\mathrm{C}(41)-\mathrm{P}(4)-\mathrm{Cr}(1)$	127.9(3)	$\mathrm{C}(42)-\mathrm{P}(4)-\mathrm{Cr}(1)$	118.2(3)
$\mathrm{C}(42)-\mathrm{P}(4)-\mathrm{C}(41)$	97.8(4)	$\mathrm{C}(43 \mathrm{~A})-\mathrm{P}(4)-\mathrm{Cr}(1)$	106.2(4)
$\mathrm{C}(43 \mathrm{~A})-\mathrm{P}(4)-\mathrm{C}(41)$	91.6(4)	$\mathrm{C}(43 \mathrm{~A})-\mathrm{P}(4)-\mathrm{C}(42)$	112.1(5)
$\mathrm{C}(43 \mathrm{~B})-\mathrm{P}(4)-\mathrm{Cr}(1)$	108.1(5)	$\mathrm{C}(43 \mathrm{~B})-\mathrm{P}(4)-\mathrm{C}(41)$	$111.8(6)$
$\mathrm{C}(43 \mathrm{~B})-\mathrm{P}(4)-\mathrm{C}(42)$	84.7(5)	$\mathrm{P}(4)-\mathrm{C}(43 \mathrm{~A})-\mathrm{C}(33)$	109.0(6)
$\mathrm{P}(4)-\mathrm{C}(43 \mathrm{~B})-\mathrm{C}(33)$	116.1(8)		
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{Cr}(1)$	176.8(4)	$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{Cr}(1)$	179.0(4)

The ethylene complex has i.r. bands at $3032,3020(\mathrm{C}-\mathrm{H})$, and $1168 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$ while the ${ }^{1} \mathrm{H}$ n.m.r. spectrum shows a broad band at 1.28 p.p.m. due to bound ethylene; the broadness of the peak, coupled with a peak at 5.24 p.p.m. due to free ethylene indicates dissociation and exchange broadening in solution at room temperature. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ spectrum at $-80^{\circ} \mathrm{C}$ has a sharp singlet as expected for the trans configuration. Good quality crystals were obtained but due to crystallographic problems, presumably similar to those for the cis- $\left(\mathrm{N}_{2}\right)_{2}$ complex, the structure was unresolvable.

The butadiene complex, which is very sensitive to oxygen even in the solid state, has three multiplets in the ${ }^{1} \mathrm{H}$ n.m.r. spectrum at $4.00,0.81$, and -1.75 p.p.m. assignable to η^{4} $\mathrm{C}_{4} \mathrm{H}_{6},{ }^{11}$ while the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ spectrum has a broad singlet at 77.8 p.p.m. at room temperature.

Figure 3. The structure of $\mathrm{Cr}(\mathrm{PhC} \equiv \mathrm{CPh})_{2}$ (dmpe)
5. 1,2-Bis(diphenylphosphino)ethanehis(diphenylacetylene)chromium (0).-Although traces of this acetylene complex were isolated in a photolysis reaction, it is readily obtained by interaction of the acetylene and trans $-\mathrm{Cr}\left(\mathrm{N}_{2}\right)_{2}(\mathrm{dmpe})_{2}$ on heating in hexane.

The X-ray structure is shown in Figure 3 and selected bond distances and angles in Table 3. The $\mathrm{Cr}-\mathrm{P}$ distances are very similar to those found for the dinitrogen and carbonyl complexes. The difference between the two values, ca. $0.02 \AA$, may be due to steric interactions involving the acetylene carbon atoms since in the structure as found, the two groups of $\mathrm{P} \ldots \mathrm{C}$ contacts for the two P atoms are very similar indeed. There also exists a slight asymmetry in the bonding of the acetylene groups with one short $[1.902(5), 1.886(5) \AA]$ and one long [1.961(5), $1.980(5) \AA] \mathrm{Cr}-\mathrm{C}$ bond to each group. Again, intermolecular steric factors may be responsible.

The bonding of the two acetylenes, which act as 4 -electron donors, has occurred with substantial bending back of the attached phenyl groups [$\left.\mathrm{Ph}-\mathrm{C} \equiv \mathrm{C}=136.9(3)-141.3(3)^{\circ}\right]$, and lengthening of the $\mathrm{C} \equiv \mathrm{C}$ bonds to $1.307(5)$ and $1.310(5) \AA$. These features indicate significant contributions from the metallacyclopropenyl form of bonding for these ligands.

6. Bis[1,2-bis(dimethylphosphino)ethane]tetrahydrido-

chromium(IV).-Interaction of a slurry of trans $-\mathrm{CrCl}_{2}(\mathrm{dmpe})_{2}$ in light petroleum with two equivalents of LiBu^{n} under hydrogen produces an orange-red solution from which yellow crystals of $\mathrm{CrH}_{4}(\mathrm{dmpe})_{2}$ may be isolated. Since the tetrahydride is also formed under argon, the complex probably results from initial formation of the n-butyl, followed by a β-hydride transfer with olefin elimination to give a dihydride which may abstract hydrogen from the solvent. The tetrahydride can also be obtained in quantitative yield by photolysis of $\mathrm{Cr}\left(\mathrm{N}_{2}\right)_{2}(\mathrm{dmpe})_{2}$ in hexane under hydrogen for ca. 5 min .

The compound is the first chromium(Iv) hydrido-species and the first example of eight-co-ordinate $\mathrm{Cr}^{1 \mathrm{v}}$.

The structure of this complex is shown in Figure 4, whilst selected bond lengths and angles are given in Table 4. The molecular geometry is dodecahedral, with the phosphorus atoms occupying the B sites and the hydrogens the A sites, and the structure corresponds to the $D_{2 d}$ isomeric form of a $\mathrm{ML}_{2} \mathrm{D}_{2}$ system ($\mathrm{L}=$ mono-, $\mathrm{D}=$ bi-dentate ligand). The chelation produces a small amount of distortion from the idealised geometry, with an intertrapezial plane angle of 82.9°. The groups making up the two trapezia $[\mathrm{P}(1), \mathrm{H}(1), \mathrm{H}(2), \mathrm{P}(3)]$ and

Table 3. Bond lengths (\AA) and angles (${ }^{\circ}$) for $\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{Ph}_{2}\right)_{2}$ (dmpe)

$\mathbf{P}(1)-\mathrm{Cr}(1)$	2.280 (3)	$\mathrm{P}(2)-\mathrm{Cr}(1) \quad 2.2$	2.298(3)
$\mathrm{C}(3)-\mathrm{Cr}(1)$	$1.902(5)$	$\mathrm{C}(4)-\mathrm{Cr}(1) \quad 1.9$.961(5)
$\mathrm{C}(5)-\mathrm{Cr}(1)$	1.886(5)	$\mathrm{C}(6)-\mathrm{Cr}(1) \quad 1.9$.980(5)
$\mathrm{C}(1)-\mathrm{P}(1)$	1.831(7)	$\mathrm{C}(11)-\mathrm{P}(1) \quad 1.8$.846(8)
$\mathrm{C}(12)-\mathrm{P}(1)$	$1.815(6)$	$\mathrm{C}(2)-\mathrm{P}(2) \quad 1.8$.831(7)
$\mathrm{C}(21)-\mathrm{P}(2)$	1.820(6)	$\mathrm{C}(22)-\mathrm{P}(2) \quad 1.8$.814(7)
$\mathrm{C}(2)-\mathrm{C}(1)$	1.484(9)		
$\mathrm{C}(4)-\mathrm{C}(3)$	1.307(5)	$\mathrm{C}(31)-\mathrm{C}(3) \quad 1.4$.467(5)
C(41)-C(4)	1.461(5)	$\mathrm{C}(6)-\mathrm{C}(5) \quad 1.3$.310(5)
C(51)-C(5)	1.459(5)	$\mathrm{C}(61)-\mathrm{C}(6) \quad 1.4$.462(5)
$\mathrm{C}(32)-\mathrm{C}(31)$	1.389(5)	$\mathrm{C}(36)-\mathrm{C}(31) \quad 1.3$.380(5)
$\mathrm{C}(33)-\mathrm{C}(32)$	$1.373(6)$	$\mathrm{C}(34)-\mathrm{C}(33) \quad 1.3$.350(6)
$\mathrm{C}(35)-\mathrm{C}(34)$	$1.374(6)$	$\mathrm{C}(36)-\mathrm{C}(35) \quad 1.37$.375(6)
$\mathrm{C}(42)-\mathrm{C}(41)$	$1.385(6)$	$\mathrm{C}(46)-\mathrm{C}(41) \quad 1.3$.386(5)
$\mathrm{C}(43)-\mathrm{C}(42)$	$1.383(6)$	$\mathrm{C}(44)-\mathrm{C}(43) \quad 1.3$.367(7)
$\mathrm{C}(45)-\mathrm{C}(44)$	1.346(7)	$\mathrm{C}(46)-\mathrm{C}(45) \quad 1.3$.373(6)
$\mathrm{C}(52)-\mathrm{C}(51)$	$1.386(5)$	$\mathrm{C}(56)-\mathrm{C}(51) \quad 1.3$.386(5)
$\mathrm{C}(53)-\mathrm{C}(52)$	$1.364(6)$	$\mathrm{C}(54)-\mathrm{C}(53) \quad 1.35$.351(6)
$\mathrm{C}(55)-\mathrm{C}(54)$	$1.379(6)$	$\mathrm{C}(56)-\mathrm{C}(55) \quad 1.37$.377(6)
C(63)-C(61)	$1.386(6)$	$\mathrm{C}(66)-\mathrm{C}(61) \quad 1.36$.363(6)
$\mathrm{C}(63)-\mathrm{C}(62)$	$1.385(7)$	$\mathrm{C}(64)-\mathrm{C}(63) \quad 1.3$.318(9)
$\mathrm{C}(65)-\mathrm{C}(64)$	$1.356(8)$	$\mathrm{C}(66)-\mathrm{C}(65) \quad 1.3$.384(7)
$\mathrm{P}(2)-\mathrm{Cr}(1)-\mathrm{P}(1)$	82.90(5)	$\mathrm{C}(3)-\mathrm{Cr}(1)-\mathrm{P}(1)$	106.9(2)
$\mathrm{C}(3)-\mathrm{Cr}(1)-\mathrm{P}(2)$	126.2(2)	$\mathrm{C}(4)-\mathrm{Cr}(1)-\mathrm{P}(1)$	103.1(2)
$\mathrm{C}(4)-\mathrm{Cr}(1)-\mathrm{P}(2)$	86.7(2)	$\mathrm{C}(4)-\mathrm{Cr}(1)-\mathrm{C}(3)$	39.5(1)
$\mathrm{C}(5)-\mathrm{Cr}(1)-\mathrm{P}(1)$	128.3(2)	$\mathrm{C}(5)-\mathrm{Cr}(1)-\mathrm{P}(2)$	108.3(2)
$\mathrm{C}(5)-\mathrm{Cr}(1)-\mathrm{C}(3)$	105.5(2)	$\mathrm{C}(5)-\mathrm{Cr}(1)-\mathrm{C}(4)$	127.2(2)
$\mathrm{C}(6)-\mathrm{Cr}(1)-\mathrm{P}(1)$	88.9(2)	$\mathrm{C}(6)-\mathrm{Cr}(1)-\mathrm{P}(2)$	104.8(2)
$\mathrm{C}(6)-\mathrm{Cr}(1)-\mathrm{C}(3)$	127.6(2)	$\mathrm{C}(6)-\mathrm{Cr}(1)-\mathrm{C}(4)$	164.4(1)
$\mathrm{C}(6)-\mathrm{Cr}(1)-\mathrm{C}(5)$	39.5(1)		
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{Cr}(1)$	111.1(3)	$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{Cr}(1)$	123.2(3)
$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(1)$	105.2(4)	$\mathrm{C}(12)-\mathrm{P}(1)-\mathrm{Cr}(1)$	112.9(2)
$\mathrm{C}(12)-\mathrm{P}(1)-\mathrm{C}(1)$	101.7(3)	$\mathrm{C}(12)-\mathrm{P}(1)-\mathrm{C}(11)$) 100.3(3)
$\mathrm{C}(2)-\mathrm{P}(2)-\mathrm{Cr}(1)$	109.6(3)	$\mathrm{C}(21)-\mathrm{P}(2)-\mathrm{Cr}(1)$	114.8(3)
$\mathrm{C}(21)-\mathrm{P}(2)-\mathrm{C}(2)$	101.9(3)	$\mathrm{C}(22)-\mathrm{P}(2)-\mathrm{Cr}(1)$	125.2(3)
$\mathrm{C}(22)-\mathrm{P}(2)-\mathrm{C}(2)$	103.2(4)	$\mathrm{C}(22)-\mathrm{P}(1)-\mathrm{C}(21)$) 99.1(3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{P}(1)$	110.1(4)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{P}(2)$	110.4(5)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{Cr}(1)$	72.7(3)	$\mathrm{C}(31)-\mathrm{C}(3)-\mathrm{Cr}(1)$	149.6(2)
$\mathrm{C}(31)-\mathrm{C}(3)-\mathrm{C}(4)$	137.5(3)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{Cr}(1)$	67.8(3)
$\mathrm{C}(41)-\mathrm{C}(4)-\mathrm{Cr}(1)$	155.1(2)	$\mathrm{C}(41)-\mathrm{C}(4)-\mathrm{C}(3)$	136.9(3)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{Cr}(1)$	74.1(3)	$\mathrm{C}(51)-\mathrm{C}(5)-\mathrm{Cr}(1)$) 144.4(2)
$\mathrm{C}(51)-\mathrm{C}(5)-\mathrm{C}(6)$	141.3(3)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{Cr}(1)$	66.3(3)
$\mathrm{C}(61)-\mathrm{C}(6)-\mathrm{Cr}(1)$	155.9(2)	$\mathrm{C}(61)-\mathrm{C}(6)-\mathrm{C}(5)$	137.7(3)
$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(3)$	121.4(4)	$\mathrm{C}(36)-\mathrm{C}(31)-\mathrm{C}(3)$) $121.3(4)$
$\mathrm{C}(36)-\mathrm{C}(31)-\mathrm{C}(32)$	117.3(4)	$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{C}(31)$	1) $120.6(4)$
$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{C}(32)$	121.2(4)	$\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{C}(33)$	3) 119.4(5)
$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(34)$	119.8(4)	$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(31)$	1) 121.6(4)
$\mathrm{C}(42)-\mathrm{C}(41)-\mathrm{C}(4)$	119.2(4)	$\mathrm{C}(46)-\mathrm{C}(41)-\mathrm{C}(4)$) 123.4(4)
$\mathrm{C}(46)-\mathrm{C}(41)-\mathrm{C}(42)$	117.4(4)	$\mathrm{C}(43)-\mathrm{C}(42)-\mathrm{C}(41)$	1) 120.6(5)
$\mathrm{C}(44)-\mathrm{C}(43)-\mathrm{C}(42)$	120.1(5)	$\mathrm{C}(45)-\mathrm{C}(44)-\mathrm{C}(43)$	3) 120.2(5)
$\mathrm{C}(46)-\mathrm{C}(45)-\mathrm{C}(44)$	120.3(5)	$\mathrm{C}(45)-\mathrm{C}(46)-\mathrm{C}(41)$	1) 121.4(5)
$\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{C}(5)$	119.9(4)	$\mathrm{C}(56)-\mathrm{C}(51)-\mathrm{C}(5)$) 121.9(4)
$\mathrm{C}(56)-\mathrm{C}(51)-\mathrm{C}(52)$	118.3(4)	$\mathrm{C}(53)-\mathrm{C}(52)-\mathrm{C}(51)$	1) 120.3(4)
$\mathrm{C}(54)-\mathrm{C}(53)-\mathrm{C}(52)$	120.6(4)	$\mathrm{C}(55)-\mathrm{C}(54)-\mathrm{C}(53)$	3) 121.2(4)
$\mathrm{C}(56)-\mathrm{C}(55)-\mathrm{C}(54)$	118.2(4)	$\mathrm{C}(55)-\mathrm{C}(56)-\mathrm{C}(51)$	1) 121.4(4)
$\mathrm{C}(62)-\mathrm{C}(61)-\mathrm{C}(6)$	122.5(4)	$\mathrm{C}(66)-\mathrm{C}(61)-\mathrm{C}(6)$	(121.1(4)
$\mathrm{C}(66)-\mathrm{C}(61)-\mathrm{C}(62)$	116.4(5)	$\mathrm{C}(63)-\mathrm{C}(62)-\mathrm{C}(61)$	1) 120.4(6)
$\mathrm{C}(64)-\mathrm{C}(63)-\mathrm{C}(62)$	121.6(6)	C(65)-C(64)-C(63)	3) 120.0(5)
$\mathrm{C}(66)-\mathrm{C}(65)-\mathrm{C}(64)$	119.3(6)	$\mathrm{C}(65)-\mathrm{C}(66)-\mathrm{C}(61)$	1) 122.3(6)

[$\mathrm{P}(2), \mathrm{H}(3), \mathrm{H}(4), \mathrm{P}(4)]$ are themselves quite planar (sum of angles $=360.1$ and 360.6° respectively).

The Cr-P distances, 2.252-2.258(3) \AA are shorter than in the two octahedral complexes described above, and although this might be expected on account of the smaller radius of the $\mathrm{Cr}^{\text {lv }}$

Figure 4. The structure of the eight-co-ordinate $\mathrm{CrH}_{4}(\mathrm{dmpe})_{2}$

Table 4. Bond lengths (\AA) and angles (${ }^{\circ}$) for $\mathrm{CrH}_{4}(\mathrm{dmpe})_{2}$

$\mathrm{Cr}(1)-\mathrm{P}(1)$	2.258(3)	$\mathrm{Cr}(1)-\mathrm{P}(2) \quad 2.25$	2.252(3)
$\mathrm{Cr}(1)-\mathrm{P}(3)$	2.258(3)	$\mathrm{Cr}(1)-\mathrm{P}(4) \quad 2.25$	$2.252(3)$
$\mathrm{Cr}(1)-\mathrm{H}(1)$	1.60 (3)	$\mathrm{Cr}(1)-\mathrm{H}(2) \quad 1.56$	1.56(3)
$\mathrm{Cr}(1)-\mathrm{H}(3)$	1.53(3)	$\mathrm{Cr}(1)-\mathrm{H}(4) \quad 1.59$	1.59(4)
$\mathrm{P}(1)-\mathrm{C}(11)$	1.824(6)	$\mathrm{P}(2)-\mathrm{C}(21) \quad 1.82$	1.827 (6)
$\mathrm{P}(1)-\mathrm{C}(12)$	1.832(6)	$\mathrm{P}(2)-\mathrm{C}(22) \quad 1.82$	$1.825(6)$
$\mathrm{P}(1)-\mathrm{C}(13)$	1.848(5)	$\mathrm{P}(2)-\mathrm{C}(23) \quad 1.86$	1.860(6)
$\mathrm{P}(3)-\mathrm{C}(31)$	1.832(6)	$\mathrm{P}(4)-\mathrm{C}(41) \quad 1.830$	1.830(7)
$\mathrm{P}(3)-\mathrm{C}(32)$	1.823(6)	$\mathrm{P}(4)-\mathrm{C}(42) \quad 1.83$	$1.839(6)$
$\mathrm{P}(3)-\mathrm{C}(33)$	1.859(7)	$\mathrm{P}(4)-\mathrm{C}(43) \quad 1.84$	1.849(7)
$\mathrm{P}(2)-\mathrm{Cr}(1)-\mathrm{P}(1)$	84.80(5)	$\mathbf{P}(3)-\mathrm{Cr}(1)-\mathrm{P}(1)$	159.00(5)
$\mathrm{P}(3)-\mathrm{Cr}(1)-\mathrm{P}(2)$	99.80(5)	$\mathrm{P}(4)-\mathrm{Cr}(1)-\mathrm{P}(1)$	98.40(5)
$\mathrm{P}(4)-\mathrm{Cr}(1)-\mathrm{P}(2)$	157.90(5)	$\mathrm{P}(4)-\mathrm{Cr}(1)-\mathrm{P}(3)$	85.10(5)
$\mathrm{H}(1)-\mathrm{Cr}(1)-\mathrm{P}(1)$	67(1)	$\mathrm{H}(1)-\mathrm{Cr}(1)-\mathrm{P}(2)$	78(1)
$\mathrm{H}(1)-\mathrm{Cr}(1)-\mathrm{P}(3)$	134(1)	$\mathbf{H}(1)-\mathrm{Cr}(1)-\mathrm{P}(4)$	84(1)
$\mathrm{H}(2)-\mathrm{Cr}(1)-\mathrm{P}(1)$	132(1)	$\mathrm{H}(2)-\mathrm{Cr}(1)-\mathrm{P}(2)$	84(1)
$\mathrm{H}(2)-\mathrm{Cr}(1)-\mathrm{P}(3)$	68(1)	$\mathbf{H}(2)-\mathrm{Cr}(1)-\mathrm{P}(4)$	78(1)
$\mathrm{H}(2)-\mathrm{Cr}(1)-\mathrm{H}(1)$	65(2)	$\mathrm{H}(3)-\mathrm{Cr}(1)-\mathrm{P}(1)$	$77(1)$
$\mathrm{H}(3)-\mathrm{Cr}(1)-\mathrm{P}(2)$	71(1)	$\mathrm{H}(3)-\mathrm{Cr}(1)-\mathrm{P}(3)$	85(1)
$\mathrm{H}(3)-\mathrm{Cr}(1)-\mathrm{P}(4)$	131(1)	$\mathrm{H}(3)-\mathrm{Cr}(1)-\mathrm{H}(1)$	134(2)
$\mathrm{H}(3)-\mathrm{Cr}(1)-\mathrm{H}(2)$	140(2)	$\mathrm{H}(4)-\mathrm{Cr}(1)-\mathrm{P}(1)$	85(1)
$\mathbf{H}(4)-\mathrm{Cr}(1)-\mathrm{P}(2)$	135(1)	$\mathrm{H}(4)-\mathrm{Cr}(1)-\mathrm{P}(3)$	77(1)
$\mathbf{H}(4)-\mathrm{Cr}(1)-\mathbf{P}(4)$	68(1)	$\mathrm{H}(4)-\mathrm{Cr}(1)-\mathrm{H}(1)$	137(2)
$\mathrm{H}(4)-\mathrm{Cr}(1)-\mathrm{H}(2)$	133(2)	$\mathrm{H}(4)-\mathrm{Cr}(1)-\mathrm{H}(3)$	64(2)
$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{Cr}(1)$	120.3(2)	$\mathrm{C}(12)-\mathrm{P}(1)-\mathrm{Cr}(1)$	122.3(3)
$\mathrm{C}(12)-\mathrm{P}(1)-\mathrm{C}(11)$	99.6(3)	$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{Cr}(1)$	109.9(2)
$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{C}(11)$	101.9(3)	$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{C}(12)$	99.2(3)
$\mathrm{C}(21)-\mathrm{P}(2)-\mathrm{Cr}(1)$	123.7(3)	$\mathrm{C}(22)-\mathrm{P}(2)-\mathrm{Cr}(1)$	119.7(2)
$\mathrm{C}(22)-\mathrm{P}(2)-\mathrm{C}(21)$	100.7(4)	$\mathrm{C}(23)-\mathrm{P}(2)-\mathrm{Cr}(1)$	109.1(2)
$\mathrm{C}(23)-\mathrm{P}(2)-\mathrm{C}(21)$	98.5(3)	$\mathrm{C}(23)-\mathrm{P}(2)-\mathrm{C}(22)$	101.2(3)
$\mathrm{C}(31)-\mathrm{P}(3)-\mathrm{Cr}(1)$	123.8(3)	$\mathrm{C}(32)-\mathrm{P}(3)-\mathrm{Cr}(1)$	120.1(2)
$\mathrm{C}(32)-\mathrm{P}(3)-\mathrm{C}(31)$	99.1(3)	$\mathrm{C}(33)-\mathrm{P}(3)-\mathrm{Cr}(1)$	109.3(2)
$\mathrm{C}(33)-\mathrm{P}(3)-\mathrm{C}(31)$	99.2(3)	$\mathrm{C}(33)-\mathrm{P}(3)-\mathrm{C}(32)$	101.6(4)
$\mathrm{C}(41)-\mathrm{P}(4)-\mathrm{Cr}(1)$	119.5(3)	$\mathrm{C}(42)-\mathrm{P}(4)-\mathrm{Cr}(1)$	123.8(3)
$\mathrm{C}(42)-\mathrm{P}(4)-\mathrm{C}(41)$	99.9(4)	$\mathrm{C}(43)-\mathrm{P}(4)-\mathrm{Cr}(1)$	109.3(2)
$\mathrm{C}(43)-\mathrm{P}(4)-\mathrm{C}(41)$	103.2(4)	$\mathrm{C}(43)-\mathrm{P}(4)-\mathrm{C}(42)$	97.4(3)

centre compared with Cr^{0}, competing factors would be the higher co-ordination number and fewer electrons available for back-bonding. These distances may therefore additionally reflect both the small steric influence of the hydrogen atoms (with a cone angle of $c a .64^{\circ}$) and the loss of two competing π-acceptor ligands (N_{2} and CO).
It is interesting to compare this d^{2} structure with that of the related molecule $\mathrm{ZrMe}_{4}(\mathrm{dmpe})_{2}{ }^{12}$ which is also dodecahedral but which has the dmpe ligands bridging the two pairs of A sites leaving the methyl groups to occupy the B sites.

The i.r. and n.m.r. spectra are consistent with the structure determined by X-ray diffraction. There are $\mathrm{Cr}-\mathrm{H}$ stretches in the i.r. spectrum at $1757 \mathrm{~m}, 1725 \mathrm{~s}$, and $1701 \mathrm{~m} \mathrm{~cm}^{-1}$ while the ${ }^{1} \mathrm{H}$ n.m.r. spectrum shows a binomial quintet centred at -6.91 p.p.m. The proton-coupled ${ }^{31} \mathrm{P}$ n.m.r. spectrum also shows a binomial quintet at 78.8 p.p.m., $J(\mathrm{P}-\mathrm{H})=56.1 \mathrm{~Hz}$. Apart from slight broadening due to viscosity effects, there is no change in the ${ }^{31} \mathrm{P}$ spectrum on cooling to $-80^{\circ} \mathrm{C}$ suggesting non-rigidity in solution.

Experimental

Microanalyses were by Pascher, Bonn. All manipulations were performed under oxygen-free nitrogen or argon or in vacuo. All chemicals used were of reagent grade. Melting points were determined in sealed capillaries under argon. Solvents were dried over sodium (except dichloromethane, which was dried over $\mathrm{P}_{2} \mathrm{O}_{5}$) and distilled from sodium benzophenone under nitrogen immediately before use. The light petroleum used had b.p. $40-60^{\circ} \mathrm{C}$.

Spectrometers.-N.m.r.: JEOL FX-90Q ($\left.{ }^{13} \mathrm{C}, 22.51 \mathrm{MHz}\right)$ and Bruker WM250 ($\left.{ }^{1} \mathrm{H}, 250 \mathrm{MHz} ;{ }^{31} \mathrm{P}, 36.21 \mathrm{MHz}\right)$. Data are given in δ (p.p.m.); ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ are referenced to SiMe_{4} and ${ }^{31} \mathrm{P}$ to external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ [via internal $\mathrm{P}(\mathrm{OMe})_{3}$]; solvent $\mathrm{C}_{6} \mathrm{D}_{6}$ unless otherwise stated. I.r.: Perkin-Elmer 683; spectra (cm^{-1}) determined in Nujol mulls unless otherwise specified. Mass: V.G. Micromass 7070 and MS-9. Raman: SPEX 1401 double monochromator in conjunction with Coherent Radiation model CR500K krypton-ion laser; detection of the scattered radiation was by standard photon counting techniques employing RCA C31034 photomultipliers and an exciting line of 647 nm . Wavenumber measurements were calibrated by reference to the emission spectrum of neon. KBr discs were cooled to 80 K using a liquid-nitrogen dewar assembly. Photoelectron: ESCALAB Mark 2, V.G. Scientific.

Reactions requiring pressure were made in glass pressure bottles. Photolysis reactions were normally carried out at $0{ }^{\circ} \mathrm{C}$ in these bottles using a $250-\mathrm{W}$ u.v. lamp.
trans-Bis[1,2-bis(dimethylphosphino)ethane]bis(dinitrogen)chromium (0). $-\mathrm{CrCl}_{2}(\mathrm{dmpe})_{2}{ }^{1,2}(4.01 \mathrm{~g}, 9.5 \mathrm{mmol})$ in nitrogensaturated tetrahydrofuran ($130 \mathrm{~cm}^{3}$) was transferred to a glass pressure bottle containing sodium amalgam (5 equiv. Na per Cr) which had been cooled to $-78^{\circ} \mathrm{C}$. The bottle was pressurised with nitrogen (5 atm) and the solution allowed to warm slowly to room temperature with stirring. After $c a$. 1 h the solution turned brown, eventually becoming orange-red after ca. 12 h . Excess nitrogen was vented and the solution allowed to stand for 1 h , then filtered and evaporated in vacuum. Extraction of the red-orange solid with light petroleum (70 cm^{3}), followed by filtration, concentration, and subsequent cooling to $-20^{\circ} \mathrm{C}$ produced red-orange prisms of the complex. Yield: $3 \mathrm{~g}, 77 \%$, m.p. $>350^{\circ} \mathrm{C}$ [Found: C, $34.8 ; \mathrm{H}, 7.9 ; \mathrm{N}, 11.5 ; \mathrm{P}$, 29.0. $\mathrm{C}_{12} \mathrm{H}_{32} \mathrm{CrN}_{4} \mathrm{P}_{4}$ requires C, 35.3; $\mathrm{H}, 7.9 ; \mathrm{N}, 13.7 ; \mathrm{P}, 30.3 \%$]. I.r. (hexane): $1932\left(\mathrm{~N}-\mathrm{N}_{\text {asym }}\right) \mathrm{cm}^{-1}$. Raman (KBr disc): 2001.65 $\left(\mathrm{N}-\mathrm{N}_{\mathrm{sym}}\right), 942.43\left(\mathrm{Cr}-\mathrm{P}_{\mathrm{sym}}\right), 408.35 \mathrm{~cm}^{-1}\left(\mathrm{Cr}-\mathrm{N}_{\mathrm{sym}}\right)$. Electronic
spectrum (light petroleum): $\lambda_{\text {max }} .400 \mathrm{~s}, 470 \mathrm{br}, 545 \mathrm{w}$ (sh) nm. N.m.r.: ${ }^{1} \mathrm{H}, 1.29$ (br s, PMe_{2} and PCH_{2}); ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, 69.3$ (s).
cis-Bis [1,2-bis(dimethylphosphino)ethane $]$ dicarbonylchromium (0)-Method 1. A solution of trans $-\mathrm{Cr}\left(\mathrm{N}_{2}\right)_{2}(\mathrm{dmpe})_{2}$ (ca. 0.3 g) in light petroleum ($50 \mathrm{~cm}^{3}$) was pressurised to 7 atm with CO ; no reaction occurred over a period of several hours but upon irradiation the red solution rapidly turned pale yellow. Concentration of the solution and cooling to $-20^{\circ} \mathrm{C}$ afforded yellow prisms in quantitative yield, m.p. $>350^{\circ} \mathrm{C}$ [Found: C, 40.8; $\mathrm{H}, 7.8 ; \mathrm{P}, 29.3 . \mathrm{C}_{14} \mathrm{H}_{32} \mathrm{CrO}_{2} \mathrm{P}_{4}$ requires $\mathrm{C}, 41.0 ; \mathrm{H}, 7.9 ; \mathrm{P}$, 30.3%]. I.r.: $1920 \mathrm{w}, 1820 \mathrm{~s}$ br, 1755 s br; in hexane, 1820, 1755 cm^{-1}. N.m.r.: ${ }^{1} \mathrm{H}, 1.65\left[\mathrm{~d}, J(\mathrm{P}-\mathrm{H})=7.0 \mathrm{~Hz}, \mathrm{PMe}_{2}\right], 1.35(\mathrm{~m}$, $\left.\mathrm{PCH}_{2}\right), 1.22\left[\mathrm{~d}, J(\mathrm{P}-\mathrm{H})=5.2 \mathrm{~Hz}, \mathrm{PMe}_{2}\right], 1.08[\mathrm{~d}, J(\mathrm{P}-\mathrm{H})=5.0$ $\left.\mathrm{Hz}, \mathrm{PMe}_{2}\right], 0.72\left[\mathrm{~d}, J(\mathrm{P}-\mathrm{H})=4.2 \mathrm{~Hz}, \mathrm{PMe}_{2}\right] ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, 33.0$ ['quintet', $J(\mathrm{P}-\mathrm{C})=8.6 \mathrm{~Hz}, \mathrm{PCH}_{2}$], $22.6\left(\mathrm{~s}, \mathrm{PMe}_{2}\right), 20.9(\mathrm{~s}$, PMe_{2}), 20.7 ($\mathrm{s}, \mathrm{PMe}_{2}$), $20.5\left(\mathrm{~s}, \mathrm{PMe}_{2}\right) ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}\right), 73.2$ (A), $49.6\left[B,{ }^{\prime} J(\mathrm{~A}-\mathrm{B}) ’=20.7 \mathrm{~Hz}\right]$.

Method 2. trans $-\mathrm{CrCl}_{2}(\mathrm{dmpe})_{2}(0.5 \mathrm{~g}, 1.18 \mathrm{mmol})$ was dissolved in tetrahydrofuran ($50 \mathrm{~cm}^{3}$) and transferred via cannula to a pressure bottle containing excess sodium amalgam (1 g in $5 \mathrm{~cm}^{3}$). The bottle was pressurised to 30 atm with CO and allowed to stir for several hours. The solvent was removed and the residue dissolved in light petroleum ($30 \mathrm{~cm}^{3}$); after filtering, the solution was concentrated to $c a .10 \mathrm{~cm}^{3}$ and cooled to $-20^{\circ} \mathrm{C}$ to give the dicarbonyl in essentially quantitative yield.

Method 3. A solution of $\mathrm{CrMe}_{2}(\mathrm{dmpe})_{2}{ }^{1.2}(0.35 \mathrm{~g}, 0.92$ mmol) in benzene ($10 \mathrm{~cm}^{3}$) was transferred to a pressure bottle and treated with carbon monoxide (10 atm). After 12 h the solution had changed from orange to yellow; the excess CO was vented, the solution transferred to a flask, and the volatile material condensed under vacuum into a separate receiver. A ${ }^{1} \mathrm{H}$ n.m.r. spectrum of a portion of the condensate showed the presence of acetone ($0.88 \mathrm{mmol}, 96 \%$ yield, by integration vs. the benzene peak). The solid residue from the carbonylation reaction was extracted with light petroleum ($50 \mathrm{~cm}^{3}$), and the filtered extract concentrated to ca. $10 \mathrm{~cm}^{3}$ and cooled to $-20^{\circ} \mathrm{C}$ to give pale yellow prisms of cis- $\mathrm{Cr}(\mathrm{CO})_{2}(\mathrm{dmpe})_{2}$. Yield: $0.23 \mathrm{~g}, 62 \%$.
trans-Bis[1,2-bis(dimethylphosphino)ethane]bis(t-butyl isocyanide)chromium (0).-To a solution of $\mathrm{CrCl}_{2}(\text { dmpe })_{2}(0.58$ $\mathrm{g}, 1.37 \mathrm{mmol}$) in tetrahydrofuran ($50 \mathrm{~cm}^{3}$) was added t-butyl isocyanide ($0.25 \mathrm{~cm}^{3}, 2.56 \mathrm{mmol}$), and the solution transferred via cannula to excess sodium amalgam (1 g in $5 \mathrm{~cm}^{3}$). After 1 h , the red-yellow solution was decanted from the excess amalgam, the solvent removed, and the residue extracted with light petroleum ($50 \mathrm{~cm}^{3}$). The filtered extract was concentrated to $c a$. $10 \mathrm{~cm}^{3}$, refiltered, and cooled to $-20{ }^{\circ} \mathrm{C}$ to give red prisms of the complex. Yield: $0.19 \mathrm{~g}, 32 \%$ [Found: C, $50.3 ; \mathrm{H}, 9.7 ; \mathrm{N}, 5.3 ; \mathrm{P}$, 23.6. $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{CrN}_{2} \mathrm{P}_{4}$ requires C, $\left.50.9 ; \mathrm{H}, 9.7 ; \mathrm{N}, 5.4 ; \mathrm{P}, 23.9 \%\right]$. I.r.: 2085 (sh), $2055 \mathrm{vs} \mathrm{cm}{ }^{-1}$. N.m.r.: ${ }^{1} \mathrm{H}, 1.49$ (s, PMe_{2} and PCH_{2}), $1.12\left(\mathrm{~s}, \mathrm{Me}_{3} \mathrm{CNC}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}_{\}}, 166.2\left(\mathrm{~s}, \mathrm{Me}_{3} \mathrm{CNC}\right), 57.0\right.$ (s, $\mathrm{Me}_{3} \mathrm{CNC}$), 32.7 ($\mathrm{s}, \mathrm{PCH}_{2}$), 31.9 (s, Me $\mathrm{e}_{3} \mathrm{CNC}$), 21.4 (m, P Me_{2}); ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathbf{H}_{\}}, 71.8\right.$ (s).

Bis[1,2-bis(dimethylphosphino)ethane]bis(ethylene)chromium (0).-A solution of trans $-\mathrm{Cr}\left(\mathrm{N}_{2}\right)_{2}(\mathrm{dmpe})_{2}(0.3 \mathrm{~g}, 0.73$ mmol) in hexane ($50 \mathrm{~cm}^{3}$) was pressurised with ethylene (5 atm) and warmed slowly with vigorous stirring. At ca. $75{ }^{\circ} \mathrm{C}$ the solution gradually changed from red to orange. The solution was filtered, concentrated, and cooled to $-20^{\circ} \mathrm{C}$ to give golden crystals. Yield: $0.3 \mathrm{~g}, 100 \%$, m.p. $138^{\circ} \mathrm{C}$ (decomp.) [Found: C, 46.5; H, 9.9; P, 30.4. $\mathrm{C}_{16} \mathrm{H}_{40} \mathrm{CrP}_{4}$ requires $\mathrm{C}, 47.0 ; \mathrm{H}, 9.9 ; \mathrm{P}$, 30.3%]. I.r.: $3032 \mathrm{~m}, 3020(\mathrm{sh})\left(\mathrm{C}-\mathrm{H}\right.$ stretch), $1168 \mathrm{~cm}^{-1}$ (C=C). N.m.r.: ${ }^{1} \mathrm{H}, 0.72\left(\mathrm{~s}, \mathrm{PMe}_{2}\right), 1.13\left(\mathrm{~s}, \mathrm{PCH}_{2}\right), 1.28\left(\mathrm{br}, \mathrm{C}_{2} \mathrm{H}_{4}\right), 5.24$ (s, free $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right) ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, 72.5(\mathrm{~s}) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, 35.0\left(\mathrm{~m}, \mathrm{C}_{2} \mathrm{H}_{4}\right), 30.9(\mathrm{~m}$, PCH_{2}), 20.2 ($\mathrm{s}, \mathrm{PMe}_{2}$), 9.6 ($\mathrm{s}, \mathrm{PMe}_{2}$).

Table 5. Crystallographic data*

Compound	trans $-\mathrm{Cr}\left(\mathrm{N}_{2}\right)_{2}(\mathrm{dmpe})_{2}$	cis $-\mathrm{Cr}(\mathrm{CO})_{2}(\mathrm{dmpe})_{2}$	$\mathrm{CrH}_{4}(\mathrm{dmpe})_{2}$	$\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{Ph}_{2}\right)_{2}$ (dmpe $)$
Formula	$\mathrm{C}_{12} \mathrm{H}_{32} \mathrm{CrN}_{4} \mathrm{P}_{4}$	$\mathrm{C}_{14} \mathrm{H}_{32} \mathrm{CrO}_{2} \mathrm{P}_{4}$	$\mathrm{C}_{12} \mathrm{H}_{36} \mathrm{CrP}_{4}$	$\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{CrP}_{2}$
M	408.297	408.276	356.288	558.61
Crystal system	Triclinic	Monoclinic	Monoclinic	Monoclinic
a / \AA	7.575(1)	13.433(2)	3.396(2)	11.252(4)
b / \AA	8.667(2)	17.754(3)	18.004(2)	$19.045(11)$
c / \AA	9.091(1)	9.157(1)	12.522(3)	14.454(8)
$x /$	103.80(1)	90	90	90
β	106.13(1)	99.18(2)	111.17(2)	92.55(4)
$\gamma /$	103.58(1)	90	90	90
U / \AA^{3}	527.01	2155.9	1975.3	3094.3
Space group	PI	$P 2_{1} / n$	$P 2_{1} / \mathrm{c}$	$P 2_{1} / n$
Z	1	4	4	4
$D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	1.28	1.26	1.20	1.15
μ / cm^{-1}	7.83	7.70	8.24	4.46
$\theta_{\text {min }}, \theta_{\text {max }} /$	1.5, 25.0	1.5, 25.0	1.5, 27.0	1.5, 25.0
Indices		$+h, k, l$	$+h, k, l$	$h, k,+1$
Total unique data	3067	3778	4283	5452
Total observed	2674	2896	3122	3356
Significance test	$I>1.5 \sigma(I)$	$I>1.5 \sigma(I)$	$I>1.5 \sigma(I)$	$l>2 \sigma(1)$
Number of parameters	161	311	298	478
Weighting factor, g	0.0005	0.0003	0.0003	0.0005
Final R	0.0243	0.0458	0.0355	0.041
Final R^{\prime}	0.0254	0.0475	0.0341	0.044

*All measurements at 295 K except for the phenylacetylene complex, where $T=275 \mathrm{~K}$.

Bis[1,2-bis(dimethylphosphino)ethane $]$ (η^{4}-buta-1,3-diene)chromium (0).-As for the ethylene complex but using excess buta-1,3-diene to give dark red crystals. Yield: $c a .100 \%$. The compound is exceedingly air sensitive even in the solid state [m.p. $195{ }^{\circ} \mathrm{C}$ (decomp.)]; it decomposes at room temperature on standing so that we have been unable to obtain reliable analyses (mass spectrum: $m / e=406$; required, 406.) N.m.r.: ${ }^{1} \mathrm{H}, 4.0\left(\mathrm{~m}, \mathrm{C}_{4} \mathrm{H}_{6}\right), 1.29\left(\mathrm{br} \mathrm{s}, \mathrm{PCH}_{2}\right), 1.10\left(\mathrm{~s}, \mathrm{PMe}_{2}\right), 0.81(\mathrm{~m}$, $\mathrm{C}_{4} \mathrm{H}_{6}$) , $1.75\left(\mathrm{~m}, \mathrm{C}_{4} \mathrm{H}_{6}\right) ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, 77.8$ (br s).

1,2-Bis(dimethylphosphino)ethanebis(diphenylacetylene)-

 chromium (0).- $\operatorname{To~} \mathrm{Cr}\left(\mathrm{N}_{2}\right)_{2}(\mathrm{dmpe})_{2}(0.22 \mathrm{~g}, 0.54 \mathrm{mmol})$ in light petroleum ($30 \mathrm{~cm}^{3}$) was added two equivalents of diphenylacetylene (0.19 g) in light petroleum ($30 \mathrm{~cm}^{3}$). After 1 h at $75^{\circ} \mathrm{C}$ the solution which was dark red was filtered and cooled to $-20^{\circ} \mathrm{C}$ to yield dark red prisms. Yield: $0.15 \mathrm{~g}, 40 \%$, m.p. $220^{\circ} \mathrm{C}$ (decomp.) [Found: C, $72.0 ; \mathrm{H}, 6.5 ; \mathrm{P}, 11.0 . \mathrm{C}_{34} \mathrm{H}_{36} \mathrm{CrP}_{2}$ requires $\mathrm{C}, 73.1 ; \mathrm{H}$, 6.5; P, 11.1%]. I.r.: $1655(\mathrm{C} \equiv \mathrm{C}), 1589 \mathrm{~cm}^{-1}$ (Ph). N.m.r.: ${ }^{1} \mathrm{H}$, 7.61 (s), 7.54 (s), $7.20(\mathrm{~m}, \mathrm{Ph}), 1.42\left(\mathrm{~d}, \mathrm{PCH}_{2}\right), 0.74$ (d, PMe_{2}); ${ }^{31} \mathrm{P}$ - $\left\{{ }^{1} \mathrm{H}_{\}}, 93.0\right.$ (s).Bis[1,2-bis(dimethylphosphino)ethane]tetrahydridochromium-(IV).-Method 1 . A slurry of finely crushed trans $-\mathrm{CrCl}_{2}(\mathrm{dmpe})_{2}$ $(0.82 \mathrm{~g}, 2 \mathrm{mmol})$ suspended in light petroleum $\left(40 \mathrm{~cm}^{3}\right)$ was cooled to $-78{ }^{\circ} \mathrm{C}$ in a pressure bottle and two equivalents of $\mathrm{LiBu}^{\mathrm{n}}$ ($2.5 \mathrm{~cm}^{3}$ of $1.90 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in hexane) added. The bottle was pressurised with hydrogen (10 atm) and the mixture was allowed to warm slowly to room temperature with stirring. After stirring for several hours the red-orange solution was filtered, the solvent removed, and the solid extracted into light petroleum (ca. $20 \mathrm{~cm}^{3}$) which was filtered, concentrated, and cooled to $-20^{\circ} \mathrm{C}$ for 24 h to give brown-yellow crystals which were collected and dried in vacuum. Yield: ca. 25%, m.p. $130{ }^{\circ} \mathrm{C}$ (decomp.) [Found: C, 40.7; H, 10.1; P, 34.0. $\mathrm{C}_{12} \mathrm{H}_{36} \mathrm{CrP}_{4}$ requires C, 40.4; H, 10.2; P, 34.8\%]. I.r.: $1757 \mathrm{~m}, 1725 \mathrm{~s}, 1701 \mathrm{~m}$ ($\mathrm{Cr}-\mathrm{H}$ stretch) cm^{-1}. N.m.r.: ${ }^{1} \mathrm{H}, 1.23$ (br s, $\mathrm{PMe}_{2}+\mathrm{PCH}_{2}$), -6.91 [quin, $J(\mathrm{P}-\mathrm{H})=56.1 \mathrm{~Hz}, \mathrm{Cr}-\mathrm{H}]$.
Method 2. Although a solution of trans- $\mathrm{Cr}\left(\mathrm{N}_{2}\right)_{2}(\mathrm{dmpe})_{2}(c a$. 300 mg) in light petroleum ($50 \mathrm{~cm}^{3}$) under hydrogen pressure remains unchanged, upon irradiation at room temperature the
red solution became pale yellow within 5 min . Concentration and cooling of the yellow solution produced yellow crystals in essentially quantitative yield.

Crystallography:-Crystals were sealed under argon in Lindemann capillaries. All crystallographic measurements were made using a CAD4 diffractometer, operating in the $\omega / 2 \theta$ scan mode with graphite monochromated Mo- K_{x} radiation ($\lambda=$ $0.71069 \AA$) in a manner previously described in detail. ${ }^{13}$

In each case an ω scan width given by $\omega=0.8+0.35 \tan \theta$ was used, and scan times varied from 1.35 to $6.77^{10} \mathrm{~min}^{-1}$. The structures of the trans-dinitrogen, the carbonyl, the diphenylacetylene, and the hydride complexes were solved, developed, and refined via routine heavy-atom and leastsquares methods using standard programs. In the case of the trans-dinitrogen complex, the structure was examined three times. From our first analysis, ${ }^{1}$ which proceeded quite smoothly to an R value of 0.03 , we arrived at a set of geometry parameters which were quite reasonable except for an unusually short $\mathrm{N}-\mathrm{N}$ distance of $0.985(4) \AA$, for which we could offer no explanation. The $\mathrm{Cr}-\mathrm{N}$ distance was $1.957(4) \AA$. Although our calculations indicated that the $\mathrm{N}-\mathrm{N}$ distance was not a result of thermal motion shortening, we collected a second, restricted $\left(1.5 \leqslant \theta \leqslant 22^{\circ}\right)$ set of data at 193 K . Refinement on this data gave a set of parameters which included a more normal $\mathrm{N}-\mathrm{N}$ distance of $1.122(4) \AA$, and a shortened $\mathrm{Cr}-\mathrm{N}$ distance [1.878(3) $\AA]$. Still unable to account for the first result, we recorded a third data set, again at room temperature, using another crystal. The results of refinement using this set are those reported now (see above) and include a perfectly normal $\mathrm{N}-\mathrm{N}$ distance. We now consider that the erroneous results of the first roomtemperature analysis were most probably due to a small amount of trans $-\mathrm{CrCl}_{2}(\mathrm{dmpe})_{2}$ in the crystal selected. For the carbonyl complex the analyses and refinements proceeded normally except for problems in locating hydrogens on the carbons attached to one of the phosphorus atoms of one dmpe ligand. Indeed, the methylene carbon of this group [C(43)] was representable by two partial atoms (occupancies 0.6 and 0.4), and so we presume there to be rotational disorder in the Me groups. Otherwise hydrogen atoms were located experimentally

Table 6. Fractional atomic co-ordinates $\left(\times 10^{4}\right)$ for trans $-\mathrm{Cr}\left(\mathrm{N}_{2}\right)_{2}$ (dmpe) ${ }_{2}$

Atom	x	y	$=$
$\mathrm{Cr}(1)$	0	0	10000
$\mathrm{~N}(1)$	$-1818(2)$	$1059(1)$	$10321(1)$
$\mathrm{N}(2)$	$-2871(2)$	$1731(2)$	$10524(2)$
$\mathrm{P}(1)$	$932(1)$	$1837(0.5)$	$8700(0.5)$
$\mathrm{C}(11)$	$-799(3)$	$2391(3)$	$7238(2)$
$\mathrm{C}(12)$	$2618(3)$	$1527(3)$	$7644(3)$
$\mathrm{C}(13)$	$2298(3)$	$3947(2)$	$10211(2)$
$\mathrm{P}(2)$	$2341(1)$	$2053(0.5)$	$12258(0.5)$
$\mathrm{C}(21)$	$4407(3)$	$1682(3)$	$13562(3)$
$\mathrm{C}(22)$	$1552(3)$	$3208(3)$	$13778(2)$
$\mathrm{C}(23)$	$3657(3)$	$3786(2)$	$11698(2)$

Table 7. Fractional atomic co-ordinates $\left(\times 10^{4}\right)$ for cis- $\mathrm{Cr}(\mathrm{CO})_{2}-$ (dmpe) ${ }_{2}$

Atom	x	$=$	
$\mathrm{Cr}(1)$	$2275(0.5)$	$1413(0.5)$	$1792(1)$
$\mathrm{P}(1)$	$3196(1)$	$2047(1)$	$301(1)$
$\mathrm{C}(11)$	$2568(4)$	$2798(3)$	$-872(6)$
$\mathrm{C}(12)$	$3844(5)$	$1554(3)$	$-1035(6)$
$\mathrm{C}(13)$	$4246(4)$	$2576(3)$	$1373(6)$
$\mathrm{P}(2)$	$3649(1)$	$1718(1)$	$3617(1)$
$\mathrm{C}(21)$	$4369(4)$	$1068(4)$	$4950(6)$
$\mathrm{C}(22)$	$3485(4)$	$2497(3)$	$4855(6)$
$\mathrm{C}(23)$	$4693(4)$	$2094(3)$	$2698(6)$
$\mathrm{P}(3)$	$1362(1)$	$810(1)$	$3328(1)$
$\mathrm{C}(31)$	$66(4)$	$946(4)$	$2928(7)$
$\mathrm{C}(32)$	$1538(5)$	$955(4)$	$5304(6)$
$\mathrm{C}(33)$	$1465(5)$	$-224(3)$	$5283(7)$
$\mathrm{P}(4)$	$2811(1)$	$187(1)$	$1397(2)$
$\mathrm{C}(41)$	$4095(4)$	$-176(3)$	$1692(7)$
$\mathrm{C}(42)$	$2386(6)$	$-248(4)$	$-410(8)$
$\mathrm{C}(43 \mathrm{~A})$	$2459(7)$	$-426(5)$	$3031(9)$
$\mathrm{C}(43 B)$	$1923(11)$	$-476(7)$	$2066(12)$
$\mathrm{C}(1)$	$1640(3)$	$2271(2)$	$2190(5)$
$\mathrm{O}(1)$	$1187(3)$	$2810(2)$	$2420(4)$
$\mathrm{C}(2)$	$1285(3)$	$1281(2)$	$219(5)$
$\mathrm{O}(2)$	$636(3)$	$1201(2)$	$-784(4)$

Table 8. Fractional atomic co-ordinates $\left(\times 10^{4}\right)$ for $\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{Ph}_{2}\right)_{2}$ (dmpe)

Atom	x	y	$=$
$C r(1)$	$6263(0.5)$	$2542(0.5)$	$-513(0.5)$
$P(1)$	$4404(1)$	$2541(1)$	$55(1)$
$P(2)$	$6469(1)$	$1532(1)$	$350(1)$
$C(1)$	$4260(4)$	$1855(4)$	$930(4)$
$C(2)$	$5009(5)$	$1241(3)$	$708(4)$
$C(11)$	$3713(4)$	$3329(4)$	$545(4)$
$C(12)$	$3259(4)$	$2289(3)$	$-806(3)$
$C(21)$	$7281(4)$	$1683(3)$	$1458(3)$
$C(22)$	$7153(6)$	$726(3)$	$-33(4)$
$C(3)$	$6067(3)$	$2595(2)$	$-1842(2)$
$C(4)$	$6086(3)$	$1930(2)$	$-1602(2)$
$C(5)$	$7553(3)$	$3139(2)$	$-192(2)$
$C(6)$	$6707(3)$	$3309(2)$	$360(2)$
$C(31)$	$6000(3)$	$3018(2)$	$-2673(2)$
$C(32)$	$5585(3)$	$2736(2)$	$-3513(2)$
$C(33)$	$5516(4)$	$3142(2)$	$-4299(3)$
$C(34)$	$5869(4)$	$3819(2)$	$-4283(3)$
$C(35)$	$6309(4)$	$4108(2)$	$-3467(3)$
$C(36)$	$6353(4)$	$3712(2)$	$-2671(2)$
$C(41)$	$6070(3)$	$1259(2)$	$-2091(2)$
$C(42)$	$7102(4)$	$1019(2)$	$-2471(2)$
$C(43)$	$7121(4)$	$378(2)$	$-2922(3)$
$C(44)$	$616(5)$	$-25(2)$	$-2996(3)$
$C(45)$	$5099(4)$	$203(2)$	$-2640(3)$
$C(46)$	$5067(4)$	$839(2)$	$-2195(3)$

Table 8 (continued)

	x	y	z
Atom	$x(51)$	$8747(3)$	$3348(2)$
$\mathrm{C}(52)$	$9259(3)$	$3050(2)$	$-193(2)$
$\mathrm{C}(53)$	$10376(3)$	$3242(2)$	$-1425(3)$
$\mathrm{C}(54)$	$10999(3)$	$3722(2)$	$-915(3)$
$\mathrm{C}(55)$	$10534(3)$	$4026(2)$	$-145(3)$
$\mathrm{C}(56)$	$9404(3)$	$3835(2)$	$86(2)$
$\mathrm{C}(61)$	$6515(3)$	$3825(2)$	$1088(2)$
$\mathrm{C}(62)$	$6576(5)$	$3652(3)$	$2020(3)$
$\mathrm{C}(63)$	$6368(6)$	$4157(4)$	$2684(3)$
$\mathrm{C}(64)$	$6089(5)$	$4808(3)$	$2454(4)$
$\mathrm{C}(65)$	$6018(5)$	$4999(3)$	$1549(4)$
$\mathrm{C}(66)$	$6248(5)$	$4506(3)$	$877(3)$

Table 9. Fractional atomic co-ordinates $\left(\times 10^{4}\right)$ for $\mathrm{CrH}_{4}(\text { dmpe })_{2}$

Atom	x	y	z
$\mathrm{Cr}(1)$	$2133(0.5)$	$1520(0.5)$	$2141(0.5)$
$\mathrm{P}(1)$	$3320(1)$	$2633(0.5)$	$2451(1)$
$\mathrm{C}(11)$	$3815(6)$	$3091(2)$	$3838(4)$
$\mathrm{C}(12)$	$5087(5)$	$2795(3)$	$2183(5)$
$\mathrm{C}(13)$	$2089(4)$	$3335(2)$	$1471(4)$
$\mathrm{P}(2)$	$85(4)$	$2163(0.5)$	$1014(1)$
$\mathrm{C}(21)$	$-1785(4)$	$2124(3)$	$1150(6)$
$\mathrm{C}(22)$	$-468(5)$	$2119(3)$	$-539(3)$
$\mathrm{C}(23)$	$460(4)$	$3173(2)$	$1277(4)$
$\mathrm{P}(3)$	$960(1)$	501	$2478(1)$
$\mathrm{C}(31)$	$-784(5)$	$103(3)$	$1437(4)$
$\mathrm{C}(32)$	$459(7)$	$452(3)$	$3754(4)$
$\mathrm{C}(33)$	$2246(5)$	$-314(2)$	$2683(4)$
$\mathrm{P}(4)$	$4212(1)$	$789(0.5)$	$2598(1)$
$\mathrm{C}(41)$	$4847(7)$	$453(4)$	$1464(6)$
$\mathrm{C}(42)$	$6066(5)$	$1023(3)$	$3701(6)$
$\mathrm{C}(43)$	$3867(5)$	$-78(2)$	$3259(4)$

and freely refined with isotropic thermal parameters. The refinements for the phenylacetylene complex and the hydride were completed without problems, with all the hydrogen atoms being located and refined isotropically.

Table 5 gives a summary of the relevant data for all the compounds studied crystallographically. Final atomic coordinates for the completed structures are given in Tables 6-9.

Acknowledgements

We thank the S.E.R.C. for a studentship (to J. E. S.) and for support of the X-ray studies, the National Science Foundation for a N.A.T.O. Postdoctoral fellowship (to G. S. G), and Professor R. J. H. Clark of University College, London, for assistance with Raman spectra.

References

1 G. S. Girolami, J. E. Salt, G. Wilkinson, M. Thornton-Pett, and M. B. Hursthouse, J. Am. Chem. Soc., 1983, 105, 5954.
2 G. S. Girolami, G. Wilkinson, M. Thornton-Pett, and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., in the press.
3 J. Chatt, J. R. Dilworth, and R. L. Richards, Chem. Rev., 1978, 78, 589.
4 H. H. Karsch, Angen: Chem., Int. Ed. Engl., 1977, 16, 56.
5 D. Sellman and G. Maisel, Z. Naturforsch., Teil B, 1972, 27, 465.
6 Y. Uchida, T. Uchida, M. Hidai, and T. Kodama, Acta Crystallogr., Sect. B, 1975, 31, 1197.
7 J. L. Graff, T. J. Sobieralski, M. S. Wrighton, and G. L. Geoffrey, J. Am. Chem. Soc., 1982, 104, 7526.
8 R. J. W. Thomas, G. S. Lawrence, and A. A. Diamantis, Inorg. Chim. Acta, 1978, 30, L353.

9 J. A. Connor, G. K. McEwen, and C. J. Rix, J. Chem. Soc., Dalton Trans., 1974, 589.
10 (a) C. D. Wood and R. R. Schrock, J. Am. Chem. Soc., 1979, 101, 542; (b) E. Carmona Guzman and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1978, 1139; G. S. Girolami, V. V. Mainz, R. A. Andersen, S. H. Volliner, and V. W. Day, J. Am. Chem. Soc., 1981, 103, 3953; (c) K. W. Chiu, R. A. Jones, G. Wilkinson, A. M. R. Galas, and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1981, 2088; (d) H-F. Klein and H. H. Karsch, Chem. Ber., 1976, 109, 1453.

11 See, for example, S. S. Wreford and J. F. Whitney, Inorg. Chem., 1981, 20, 3918; M. Kotzian, C. G. Kreiter, G. Michael, and S. Ozkar, Chem. Ber., 1983, 116, 3637.
12 G. S. Girolami, G. Wilkinson, M. Thornton-Pett, and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1984, 2789.
13 M. B. Hursthouse, R. A. Jones, K. M. A. Malik, and G. Wilkinson, J. Am. Chem. Soc., 1979, 101, 4128.

Received 18th June 1984; Paper 4/1030

[^0]: + Bis[1,2-bis(dimethylphosphino)ethane]bis(dinitrogen)chromium(0), cis-bis[1,2-bis(dimethylphosphino)ethane]dicarbonylchromium(0), 1,2-bis(dimethylphosphino)ethanebis(diphenylacetylene)chromium(0), and bis[1,2-bis(dimethylphosphino)ethane]tetrahydrido-
 chromium(IV).
 Supplementary data available (No. SUP 56139, 10 pp .): anisotropic and isotropic thermal parameters, \mathbf{H}-atom co-ordinates. See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1985, Issue 1, pp. xvii-xix. Structure factors are available from the editorial office.
 Non-S.I. units employed. atm $=101325 \mathrm{~N} \mathrm{~m}^{-2}, \mathrm{eV} \approx 1.60 \times 10^{-19} \mathrm{~J}$.

